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Abstract. The α-ASTREE e-Tongue instrument uses seven sensors to characterize taste signals associated
with a liquid sample. The instrument was used to study eight test preparations (comprised of a blank, four
preparations corresponding to four known tastes and Sodium Topiramate in three concentrations known
to have a bitter taste) and eight washes. Serially balanced residual effects designs were used to order the
samples to estimate residual and main effects. The design provided for eight repeated measurements per
test preparation. The experimental results suggested the following: (1) The seven sensors can be separated
into three groups according to the ability to discriminate test preparations, and three of the sensors
contributed little or no information. Further investigation suggested the lack of differentiability might be
due to the age of the sensors. (2) The sensors discriminated known tastes from blank. The residual effect
due to test preparations might appear after repeated usage. (3) Exploratory principal component analysis
of the data indicated that nearly 90% of the total variability across the seven sensors could be explained by
a single principal component. (4) The four standard taste preparations did not correspond to orthogonal
dimensions in the principal component axes. (5) The three Sodium Topiramate test preparations could
neither be associated with the corresponding known bitter taste sample nor could the three doses be
shown to follow a quantitative dose-response relationship on the e-Tongue measurement scale. The
practical interpretation of the results of the statistical analysis indicates only poor discriminative ability
of the e-Tongue to distinguish clearly between increasing concentrations of a known bitter compound such
as Sodium Topiramate. No apparent linear relationship could be discerned over increasing concentrations
that would allow the quantification of bitterness.

KEY WORDS: cluster analysis; electronic tongue; principal component analysis; residual effects designs;
serially balanced design.

INTRODUCTION

There are about 10,000 taste buds residing on the surface of
the tongue which are involved in taste perception (1). Different
parts of the tongue are sensitive to different flavors with bitter-
ness sensitive taste buds located toward the back of the tongue.
Besides bitterness, sweetness, sourness, saltiness, and umami are
the other basic tastes. The perception of taste is also affected by
temperature and texture, as well as psychological factors (bad
childhood memory, acculturation). Subjective evaluation of
taste through human sensory tests is well known (2,3); however,
the quantification and characterization of tastes by means of
objective instruments is a recent development.

In pharmaceutical development, the taste of oral formulations
is an important consideration. Children and elderly patients in
particular are highly sensitive to a drug’s bitter taste which may
make more difficult or even prevent a patient from completing a
therapeutic course of treatment. Therefore, the early identification
of the bitterness potential of a drug formulation is an important
goal in drug development. An important practical concern is the

design of human studies for taste testing of pharmaceutical com-
pounds. Pharmaceutical compounds during early development
must obtain a license through the investigational new drug (IND)
process if intended for human clinical trials necessary to gain
approval for marketing. Consequently, during the development
phase when formulation development is exploring the taste prop-
erties of the new compound, any taste testing experiment must be
carried out as a regular clinical study adhering to Food and Drug
Administration (FDA) requirements governing the use of an IND.
This means the writing of a clinical protocol, tracking of medical
status and side effects, and filling out a detailed case report form
followed by a comprehensive clinical report. A medical monitor
has to supervise the dosing. The administrative burden in carrying
out a taste study in humans of a pharmaceutical compound ismuch
more than in a taste panel evaluation of a food product. Therefore,
an objective electronic device which could replace humans for the
study of bitterness would be of great practical benefit to the phar-
maceutical industry. In this paper, wediscuss our results researching
the use of one such instrument for this purpose.

THE !-ASTREE E-TONGUE

The α-ASTREE e-Tongue instrument was developed in
2000 and marketed by the French Company Alpha M.O.S. (4).
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It has found wide application in the food and beverage indus-
try and only recently have pharmaceutical applications
emerged. The instrument contains seven sensors, each of
which produces an electrical signal related to the chemical
composition of the test solution. The combination of the re-
sponses from the seven sensors constitutes the essential mea-
surement for the objective assessment of taste (5). Zhu et al.
(6) reported that the e-Tongue could successfully distinguish
different tastes, and Uchida et al. (7) reported that the instru-
ment could discern bitterness associated with different
chemicals. Principal component analysis (PCA), discriminant
factorial analysis (DFA), and partial least squares (PLS) were
among the statistical methods used to describe the relation-
ship between the sensors and test preparations (1,8–10); how-
ever, none of these papers considered the possibility of order
or carryover effects from consecutive immersions of the sen-
sors, which could conceivably lead to biased signals even with
the use of intervening washes. A statistical design that would
mitigate this possibility is an important feature of the experi-
ments we carried out.

The e-Tongue instrument can be seen as a robotic device
in which the samples are presented in a serial order. This
ordering raises the possibility that the residual of one sample
may be carried to subsequent samples. One cannot discount
this possibility even with intervening washes since the wash
vessels can become increasingly more contaminated by re-
peated washings. Although these effects may be small, the
statistical analysis must consider the possibility of these carry-
over effects to avoid biasing the results.

PCA and DFA have been used to cluster different taste
samples; however, the question of quantifying the intensity of
the taste (bitterness in particular) on the scale of the axes
produced by the principal components requires a case by case
study. Linear regression and PLS have been used to model
and predict different bitterness intensity scores (i.e., from low
to high) for single chemicals, but different chemicals corre-
sponding to the same taste may not share a common location
or direction on the axes or have similar dose-response rela-
tionships. Consequently, the notion of similarity in dose-re-
sponse curves as a paradigm for objectively assessing taste
through an instrument as understood in the bioassay frame-
work was an important question for us.

Therefore, as a first step to addressing the stated goal, it
was necessary to characterize the output of the sensors in
relation to known standard test preparations using serially
balanced statistical designs (11,12). These designs permit the
estimation of carryover effects as well as direct effects due to
test preparations. The inherent structure of the data was in-
vestigated using linear regression and subsequent principal
component analysis and cluster analysis. The results of our
experiments are presented as summaries of what relationships
we found between the output of the sensors and the test
preparations.

METHOD

Data Description and Design of Experiment

The experiment involved two groups of samples, where the
first group was composed of the following test preparations:

C0 = distilled water,
C1 = Sodium Topiramate 0.5 mg/ml in water (low bitterness
drug concentration),
C2 = Sodium Topiramate 5 mg/ml in water (middle bitterness
drug concentration),
C3 = Sodium Topiramate 10 mg/ml in water (high bitterness
drug concentration),
S1 = 0.01 mM HCl in water (standard sourness taste),
S2 = 0.01 mM NaCl in water (standard saltiness taste),
S3 = 0.01 mM monosodium glutamate in water (standard
umami taste),
S4 = 1 mM quinine hydrochloride in water (standard bitter-
ness taste),

The second group was composed of eight washes
designated W1, W2, …, W8. Each test preparation from
group 1 was followed by a wash from group 2. The
question of how the preparations should be sequentially
ordered arose, since residual or carryover contamination
from repeated immersions of the seven sensors could be
present. In this case, the sequence requires preparations
from one group to follow samples from another group
(i.e., a wash step has to be performed between test prep-
arations from group 1), and consequently, the ordering
must be performed in such a way as to accommodate this
requirement. The ordering followed the construction of
serially balanced sequences as given in Altan et al.
(11,12). Essentially, the method of construction depends
on appropriately linking the entries of a Williams design
(13) into a chain and interweaving the entries from a
Latin square design between the consecutive entries of
the chain defined by the Williams design. To illustrate
how it works, we start with a Williams design of order
eight for the eight samples of group 1, as shown in Fig. 1.
For the sake of simplicity, we replace the sample names of
C1-S4 by 0–7. Omitting the 0th row, we form four chains
of equal size by interweaving the entries as indicated by
the dotted lines. Here B1–B4 are the beginnings of the
chains and E1–E4 are the ends. Augment 0 to the very
beginning to obtain a type 2 sequence:

0 17263545362710 37465647302120 57675041323140
70615243425160.

Then, repeat each sample once to obtain the type 1
sequence:

0 1726354553627110 3746564733002120 5767750413223140
7066152434425160.

The eight washes of group 2 are inserted into the above
type 1 sequence according to the row-column designation of
an 8×8 Latin square design.

Final design consisted of a sequence of samples and
washes of length 128+1 (corresponding to positions 0, 1,
2, …, 128). Each test preparation and wash was evaluat-
ed eight times with C0 evaluated nine times to permit
residual effect balancing. The different sensors are desig-
nated AB, BB, ZZ, JE, DA, BA, and CA and their
immersions into the test samples followed the serial or-
der discussed previously. The observed responses formed
a 129×7 data matrix.
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Statistical Analysis

Modeling Analysis

The following linear model with terms corresponding to
the experimental design factors was fitted to the observations
from each sensor:

γi ¼ μþ Ii � τdi þ Δ�
gi−2

þ Δ�
di−2

n o
þ 1−Iið Þ ρgi þ γdi−1 þ γ�gi−2

n o
þ εi

ð1Þ

Where yi = response at ith position,
μ = overall mean,

Ii =
1 if ith position is a test sample
0 if ith position is a wash

�
;

τdi = direct effect of test sample di at ith position,

Δgi−1 = residual effect of wash gi−1 from (i−1)th position (first

order),

Δ�
di−2 = residual effect of test sample di−2 from (i−2)th position

(second order),

ρgi = direct effect of wash gi at ith position,

γdi−1 = residual effect of test sample di−1 from (i−1)th position

(first order),

γ�g1−2 = residual effect of wash gi−2 from (i−2)th position

(second order).

εi is residual error assumed normally and independently
distributed. Model (1) was used to estimate the direct effects
of test preparations and washes, the first-order residual effects
of washes on test preparations and test preparations on
washes, and the second-order residual effects of test prepara-
tions on test preparations and washes on washes. Because
there was no residual effect on the first sample of the se-
quence, it was removed from the model fitting. Least squares
means (LSMs) for each test preparation and wash were esti-
mated by sensor, forming a 16×7 matrix to be used for prin-
cipal component analysis and cluster analysis. The reason to

use LSMs for subsequent analyses but not the original obser-
vations was that it represents the essential sufficient statistics
accounting for the effects of the model (1) parameters, thus
capturing in a concise way the information contained across
the 128 repeated measurements of the sequence.

Principal Component Analysis

Principal component analysis is a statistical method
whose purpose is to reduce the dimensionality of multivariate
data. In this case, we have seven sensors providing responses
to four known standard taste samples: sourness (HCL), salti-
ness (NaCL), umami (Na glutamate), and bitterness (quinine).
A second and equally important goal was to relate known
concentrations of a bitter tasting drug (Sodium Topiramate)
to the measured responses of these standard taste samples.
The measurements by the seven sensors form a multivariate
response. The translation of the global responses of the
sensors to each basic taste sample would ideally fall on
distinct principal components related to the human per-
ception of taste expressed through the responses of the
four standard taste samples. The wash samples would fall
in the proximity of the origin on the principal component
axes, and their dispersion around the origin would repre-
sent the space of no effect.

The calculations were carried out on the covariance ma-
trix of the LSMs using S-PLUS® (Version 8.0) princomp()
function.

Cluster Analysis

Cluster analysis is a collection of statistical methods that
identifies groups of individuals or objects that are more similar
to each other than to individuals from other groups. The
algorithms of cluster analysis are broadly classified into hier-
archical and non-hierarchical algorithms. In this article, the
hierarchical procedures were carried out, in which a hierarchy
or tree-like structure was constructed to illustrate the relation-
ship among individuals. Specifically, the single linkage method
(nearest neighbor) was used to calculate the distance between
clusters. The clustering tree is grown according to the mini-
mum distance between clusters which can be interpreted as
the degree of similarity between subjects/clusters: the deeper

Fig. 1. Illustration of the construction of a serially balanced sequence with eight treatments
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the leaf, the greater the similarity. In the ideal situation, the
group of test preparations would fall in a cluster that is
completely separated from the group of washes. Within
the cluster of test preparations, different tastes would
be grouped according to their similarity in sensor
readings.

The analysis was carried out on the LSMs using the
SAS® (Version 9.1) PROC CLUSTER procedure.

RESULTAND DISCUSSION

Data Visualization

Figure 2 shows the responses of test preparations from each
sensor. According to the ability to differentiate test preparations,
the sensors might be roughly categorized into three groups:

Fig. 2. Scatter plot of the observed responses of test samples by sensor

Fig. 3. Scatter plot of the observed responses of wash samples by sensor
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1. Sensors ZZ and CA had the greatest differentiability.
There was a clear separation between test prepara-
tions with the magnitude generally following the same
order. The correlation coefficient between ZZ and CA
was 0.95.

2. Reponses of test preparations from sensors AB and BA
fell in a very narrow range with no separation at all. The
correlation coefficient between AB and BAwas 0.89.

3. The remaining three sensors, BB, JE, and DA might
have some ability for detecting different test prepara-
tions, but not as strong as ZZ and CA.

The three-group pattern observed for the test prepara-
tions was somewhat surprisingly reflected but to a lesser de-
gree in the responses of washes, as shown in Fig. 3.

Significance of Effects

The LSMs calculated from model (1) are given in Table I
by test preparation and sensor along with results of signifi-
cance testing of test preparations (compared to C0) and of
washes (compared to each other). Pairwise significance testing
was conducted at level p=0.05 with a Bonferroni adjustment
for multiplicity, p=0.05/7=0.007. The following conclusions
were drawn:

1. No direct or residual effects were attributed to washes.
2. No direct or residual effects were found for sensor AB,

BA, and DA, except for a second-order residual effect
of test sample S1 (0.01 mM HCL) for sensor BA. This
could be artifactual.

Table I. Least Squares Means (LSMs) by Test Sample and Sensor (units of 102)

Sensor

Sample CA ZZ AB BA DA JE BB
C0 14.4 13.8 7.4 8.5 12.8 9.7 9.7
C1 19.3* 23.0* 7.4 8.5 11.1 9.5 6.0*

C2 19.3* 22.9* 7.4 8.3 11.5 9.4 6.1*

C3 22.3* 26.0*+ 7.2 7.8 8.7 8.2* 3.5*

S1 −0.6*+ 2.6* 7.2 7.8# 9.3 4.4*+ 1.0*+#

S2 6.5* 9.6* 7.3 8.1 10.8 6.1*+ 5.0*

S3 14.9 18.5* 7.4 8.4 9.5 8.7 4.7*

S4 8.8* 12.1 7.4 8.5 12.8 6.6* 7.2
W1 15.9 18.9 7.6 8.9 13.3 10.1 8.6
W2 14.5 17.7 7.2 7.9 10.9 9.0 8.0
W3 15.6 18.2 7.7 9.1 13.7 10.0 9.6
W4 13.7 16.5 7.0 7.4 10.8 8.7 7.2
W5 15.8 18.0 7.3 7.9 10.6 9.8 7.3
W6 14.5 15.8 7.3 8.3 12.9 9.3 8.6
W7 16.6 17.1 7.2 8.0 13.7 9.6 8.6
W8 14.5 15.8 7.5 8.5 13.2 9.3 8.9
Range of Std Error 0.6 0.6–0.7 0.14–0.15 0.3–0.4 0.9–1.0 0.2 0.5–0.6

* Significantly different direct treatment effect compared to C0 of a test sample, or different from one or more washes of a wash
+ Significantly different first-order residual effect compared to C0 of a test sample, or different from one or more washes of a wash
# Significantly different second-order residual effect compared to C0 of a test sample, or different from one or more washes of a wash

Fig. 4. Biplot of the first principal component vs. the second principal
component displaying the importance of the sensors and the relative

locations of the test samples and washes

Fig. 5. Biplot of the first principal component vs. the second principal
component displaying the importance of the sensors and the relative
locations of the test samples and washes, with the removal of sensors
AB, BA, and DA
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3. For sensors CA, ZZ, JE, and BB, direct effects against C0
(water) for test preparations were frequently found signif-
icant. First-order residual effects of test preparations on
washes were found significant occasionally, and a second-
order residual effect of test preparation S1 was found

significant for sensor BB. This finding may be artifactual,
but it may also indicate instrument biases.

Some discriminative ability to distinguish test prepara-
tions from washes was found although sensors AB, BA, and

Fig. 6. Clustering tree displaying the order of grouping for test and wash samples

Fig. 7. Clustering tree displaying the order of grouping for test and wash samples, with the removal
of sensors AB, BA, and DA
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DA specifically could not distinguish known test preparations
from control (C0). It is clear that these three sensors were
non-informative in relation to estimating direct effects in our
experiment. Removing these three sensors from the calcula-
tion of the LSMs generated from model (1) would not affect
the essential features of the principal component analysis and
cluster analysis.

Principal Components

The principal component analysis was performed on
the 7×7 covariance matrix of the LSMs. The results indi-
cated that the first component explained nearly 87% of
the total variance and the second about 12%. Figure 4
shows an enhanced plot of the location of the test prep-
arations and washes on the first two principal components
axes. We found that

1. The washes formed a distinct group as expected. The
control (C0) was very close to the washes since they
were basically the same. All other test preparations
were displaced from the washes which were related
to direct treatment effects of the test preparations.

2. The four standard taste samples were clearly distin-
guishable on the two-dimensional scale as far as rela-
tive location, but it was seen that S4 (standard
bitterness taste) was in the quadrant opposite to C1,
C2, and C3 (known bitter drug), which implied the
sensors could distinguish between the four tastes, but
bitterness as a sensory quality arising from different
chemical compounds could fall in very different loca-
tions on the two-dimensional PC axes. It is possible
that another bitter tasting compound may fall in yet
another location in relation to the PC axes found in
our experiment.

3. The sensors could not distinguish between C1 (low
concentration) and C2 (middle concentration), but
C1 and C2 were clearly separated from C3 (high con-
centration). One possible explanation is that the inten-
sity signal of bitterness that the sensors could pick up
depends on a threshold factor with no broad monoton-
ic relationship to concentration.

4. Compared to what is seen in Fig. 4, the relative loca-
tion of each test preparation did not change much with
the removal of sensors AB, BA, and DA, as given in
Fig. 5. This again confirmed these three sensors only
added noise to the experiment.

Our interpretation of the relative locations of the test
preparations and washes on the two-dimensional plot is that
human sensory testing would still be required to both charac-
terize and quantify the perception of bitterness. The data does
not support the ability of the instrument to serve as an uncon-
ditional replacement for human sensory judgment. Similarity
assumption in the bioassay sense between the known standard
bitter compound quinine and the bitter drug samples did not
hold in our experiment.

Clusters

The cluster analysis was carried out on the LSMs. One of
the primary goals in a cluster analysis is to determine the

number of groups. Typically, one looks for natural group-
ings defined by long stems. Figure 6 shows the clustering
tree generated from the cluster analysis. If we cut the tree
at the minimum distance of 0.4, then clearly, the washes
and the control C0 form one major cluster, with test
preparation S3 (umami taste) joining as the last candidate.
The level of similarity within this major cluster is pretty
consistent. The rest of the test preparations forms individ-
ual clusters with C1 and C2 joining together in high
similarity. The findings were consistent with the results
from the principal component analysis. In addition, the
cluster analysis provided quantitative similarity measure-
ment. The structure of the tree remained the same after
removing the three non-informative sensors AB, BA, and
DA, as shown in Fig. 7.

CONCLUSIONS

The results of our experiments studying the α-ASTREE
Electronic Tongue for test preparation differentiation using a
serially balanced statistical design found several sensors were
non-informative. We could not find numerical criteria corre-
sponding to separate principal components between test prep-
arations corresponding to known tastes or varying levels of
bitterness. Graphical visualization of the e-Tongue signals by
sensor and test preparation did not indicate a clear criterion
permitting discrimination between known taste samples in
relation to the independent dimensions in the PCA. It is
recommended that a multi-laboratory Gage R&R study be
carried out to characterize the repeatability and reproducibil-
ity of the instrument in assessing and characterizing a set of
standardized test preparations corresponding to varying con-
centrations of known bitter compounds from different chem-
ical classes. Correlations to a standard taste panel would also
be desirable. The results of such a study should be made
available to researchers interested in pursuing experiments
utilizing the instrument.
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